Before Quiz
Question 1 Generative Gaussian Mixture
Question 1.1
$p(x)=\pi\mathcal N(x\vert\mu_1,\Sigma_1)+(1-\pi)\mathcal N(x\vert\mu_2,\Sigma_2)$
Given $\mathbf x=[x_1,\dots,x_N]$, $\mathbf t=[t_1,\dots,t_N]$
What’s the ML estimation of $\mu_1,\Sigma_1,\mu_2,\Sigma_2,\pi$?
Solution 1.1
Derive log-likelihood function w.r.t. $\pi$,
Derive log-likelihood function w.r.t. $\mu_i$,
Derive log-likelihood function w.r.t. $\Sigma_i$,
Hence we have
where
- $N_1$ is the number of data points in class 1,
- $N_2$ is the number of data points in class 2.
Question 1.2
$\pi\sim beta(a_0,b_0), p(\mu_i) = \mathcal N(m_{i0},\Sigma_{i0}), i=1,2$
Given $\mathbf x=[x_1,\dots,x_N]$, $\mathbf t=[t_1,\dots,t_N]$
What’s the MAP estimation of $\mu_1,\Sigma_1,\mu_2,\Sigma_2,\pi$?
Solution 1.2
Posterior of $\pi$:
By using the property of product of Gaussian distributions, we obtain the MAP estimation of $\mu_i$ and $\Sigma_i$
Question 1.3
What’s $p(\mathcal C_1\vert x)$ for ML and MAP models respectively?
Solution 1.3
By Bayes’ Theorem,
Question 2 Discriminative Logistic Regression
Question 2.1
$y=\sigma(w^\text T\phi(x))$
Given $\mathbf x=[x_1,\dots,x_N]$, $\mathbf t=[t_1,\dots,t_N]$
What’s the ML estimation of $q(w)$?
Solution 2.1
By Gauss-Newton iteration: $w^\text{new}=w^\text{old}-H^{-1}\nabla E(w)$, we obtain $w_\text{ML}$,
where
Hence
Question 2.2
$y=\sigma(w^\text T\phi(x))$, $p(w)\sim\mathcal N(m_0,\Sigma_0)$
Given $\mathbf x=[x_1,\dots,x_N]$, $\mathbf t=[t_1,\dots,t_N]$
What’s the MAP estimation of $q(w)$?
Solution 2.2
By Gauss-Newton iteration: $w^\text{new}=w^\text{old}-H^{-1}\nabla E(w)$, we obtain $w_\text{ML}$,
where
Hence
Question 2.3
What’s $p(t\vert y(w,x))$ for ML and MAP estimation, respectively?
Solution 2.3
Probability of $t=1$ w.r.t. ML and MAP estimations