Question 1
Given $x=u+v$, $u\sim\mathcal N(m_0,\Sigma_0)$,$v\sim\mathcal N(0,Q)$, $D=[x_1,\cdots,x_N]$
- $p(u\vert D,m_0,\Sigma_0,Q)$
- $p(x\vert D,m_0,\Sigma_0,Q)$
- evidence $p(D\vert m_0,\Sigma_0,Q)$
Solution 1.1
prior: $x\sim\mathcal N(m_0,\Sigma_0+Q)$
$p(u | D, m_0, \Sigma_0, Q) \propto p(D | m_0, \Sigma_0, Q) \cdot p(u | m_0, \Sigma_0).$
$p(D | m_0, \Sigma_0, Q)=\frac{1}{(2\pi (\Sigma_0+Q))^{N/2}}\exp\left\{-\frac{1}{2(\Sigma_0+Q)}\sum\limits_{n=1}^N (x_n-m_0)^2\right\}$
$p(u\vert m_0,\Sigma_0)=\frac{1}{(2\pi \Sigma_0)^{1/2}}\exp\left\{-\frac{1}{2\Sigma_0} (u-m_0)^2\right\}$
Hence Posterior Distribution $p(u | D, m_0, \Sigma_0, Q) \sim \mathcal N(m_u, \Sigma_u),$
where:
- $\Sigma_u^{-1} = NQ^{-1}+\Sigma_0^{-1}$
- $\Sigma_u^{-1}m_u=Q^{-1}\sum\limits_{n=1}^Nx_n+\Sigma_0^{-1}m_0$
Solution 1.2
$x=u+v$
$p(x\vert D,m_0,\Sigma_0,Q)=\mathcal N(m_u,\Sigma_u+Q)$
Solution 1.3
Question 2
Given $y=Ax+v$, $x\sim\mathcal N(m_0,\Sigma_0)$,$v\sim\mathcal N(0,Q)$, $D=[y_1,\cdots,y_N]$
- $p(x\vert D,m_0,\Sigma_0,Q)$
- $p(y\vert D,m_0,\Sigma_0,Q)$
- evidence $p(D\vert m_0,\Sigma_0,Q)$
Solution 2.1
$p(x | D, m_0, \Sigma_0, Q) \propto p(D | m_0, \Sigma_0, Q) \cdot p(x | m_0, \Sigma_0).$
$p(D | m_0, \Sigma_0, Q) = \prod\limits_{n=1}^N p(x_n)=p(D | m_0, \Sigma_0, Q)= \frac{1}{(2\pi\Sigma_0)^{N/2}}\prod\limits_{n=1}^N \exp\left\{-\frac{1}{2\Sigma_0}(x_n - m_0)^2\right\}.$
$p(x | m_0, \Sigma_0)=\mathcal N(m_0,\Sigma_0)$
Hence Posterior Distribution $p(x | D, m_0, \Sigma_0, Q) \sim \mathcal N(m_x, \Sigma_x),$
where:
$\Sigma_x = \left(\Sigma_0^{-1} + NA^TQ^{-1}A\right)^{-1}$
$\Sigma_x^{-1}m_x=\sum\limits_{n=1}^NA^TQ^{-1}y_n+\Sigma_0^{-1}m_0$
Solution 2.2
$y=Ax+v$.
$p(y | D, m_0, \Sigma_0, Q) =\mathcal N(Am_x, A\Sigma_xA^T + Q)$
Solution 2.3
Review
Learning
Prediction
Evidence
Review on Nov. 14
$x\sim p(x\vert \mu,\Sigma)$, $x = [x_0,\dots,x_N]$, $\mu\sim p(\mu\vert m_0,\Sigma_0)$
posterior $p(\mu\vert x,m_0,\Sigma_0)\propto p(x\vert \mu) p(\mu)$